Pebble Coding

ソフトウェアエンジニアによるIT関連技術や数学の備忘録

Doud's method

楕円曲線を満たすxを表す式の一つにDoud's methodがあります。 これを使い、モジュラー多項式の次数を下げた多項式を得るSEA法のロジックのうちの一つを計算してみます。 ぺー関数を以下のように表すのがDoud's methodです。 頭についている定数は以後の計算…

macOS 10.15 catalina zshrcのgitプロンプト設定

macOS 10.15 catalina からデフォルトシェルがbashからzshrcになりました。 今までいい感じだったコマンドプロンプトを作り直さないといけません。やれやれですね。 今までのbashの設定とほぼ変わらない形で以下を作ってみました。 ブランチ名の右側の記号が…

nが素数の時に成り立つ1のn乗根に関する等式

nが素数の時に成り立つ1のn乗根に関する等式 を証明します。 以下の事実を使います。 (式A) (式B) n is prime (式A)の右辺をzの同じ次数のべきでまとめると、の係数は0なので、 以下が成り立ちます。 pick k different element from 次に から一つの要素を除…

楕円曲線のsupersingular

標数pの楕円曲線Eがp等倍点を無限遠点しか持たないとき、その楕円曲線をsupersingularであると呼ぶ。 定理1 qを奇数でであるとし、とするとき、 はsupersingularである。 定理2 完全体上の標数pのsupersingularな楕円曲線はj-invariantが内にある。 (J. H. S…

等倍点とn乗根

定理1 n等倍点がE(K)に全て含まれるなら、n乗根は体Kに含まれる。 この定理から以下が言える。定理2 Eを(有理数体)上の楕円曲線とするとき、n=3以上のn等倍点でに含まれないものが存在する。 定理1は、体上のEを考えるとき(pは素数)、n等倍点がE(K)に含まれ…

プライバシーポリシー

お問い合わせ

スポンサーリンク