Pebble Coding

ソフトウェアエンジニアによるIT関連技術や数学の備忘録

多項式の割り算、商と余り

多項式の割り算、商と余りの求め方をみていきます。 1変数xの2つの多項式A(x), B(x)を考えます。多項式の係数は全て整数とします。 次数の大きい方をA(x), 次数の少ない方をB(x)とし、 ここでは次数の少ない方の多項式の最大次数の係数は1としておきます。 …

ユークリッドの互除法とpython3で最大公約数(GCD)を求める

2つの整数の最大公約数を求めるアルゴリズムとしてユークリッドの互除法があります。 2つの整数を割り算して余りを求める操作を繰り返し、余りが0になったら終了するアルゴリズムです。 pythonで2つの整数の最大公約数を求める関数gcd()を実装したのがこち…

有限体の楕円曲線の有理点の数とZ関数

有限体の楕円曲線の有理点の数からZ関数を導いていきます。 定理1 qを素数とし、有限体上の楕円曲線Eの有理点について、 とおきます。 また、の解を複素数とおきます。 すると、有限体 上の楕円曲線Eの有理点の数は、 となります。 証明は省略します。 ここ…

有限群の元のべき乗の位数

ラグランジュの定理 Gが有限群、 ならgの位数は群Gの位数の約数である。 この定理より、以下の定理が導かれます。 gが群Gの位数n>0の元でなら、の位数は である。 例: (65537は素数です)の場合、 の位数は

中国の剰余定理

中国の剰余定理 で m, n は互いに素とする。 つまり、 を満たすはの範囲にただ一つ存在する。 中国剰余定理の証明と例題(二元の場合) | 高校数学の美しい物語 これは、2つの値の場合ですが、もっと拡張します。 を異なる素数とし、 ... を満たすxはの範囲…

プライバシーポリシー

お問い合わせ

スポンサーリンク