Pebble Coding

ソフトウェアエンジニアによるIT関連技術や数学の備忘録

2017-11-04から1日間の記事一覧

素体Fp上の楕円曲線 y^2 = x^3 + D の有理点の数

の素体上の有理点の数を調べます。 楕円曲線Eの有理点の数を#Eと書きます。 素数pを3で割って2余る場合は、有理点の数は無限遠点を含み、#E= p + 1 であることが知られています。 の場合の、有理点の数をpythonで調べた結果がこちらです。 p, p mod 3, #E 2,…

素体Fpの乗法群

素体は体であり、元は{0, 1, ..., p-1}のp個あります。 素体という時、pは素数です。 体なので、加法と乗法について閉じているわけですが、乗法演算の部分のみを取り出した群のことを、 素体の乗法群と呼びと書きます。 この乗法群には加法の単位元0は含まれ…

群論における写像

群論における写像の定義メモ。 準同型写像、同型写像、自己同型写像。 写像というのはプログラムで考えると、引数を一つ入力として持ち、戻り値を一つ返す関数だとイメージすることができますが、 要するに関数f(x)のことです。 準同型写像 関数f(x)が f(x)f…

プライバシーポリシー

お問い合わせ

スポンサーリンク